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WHERE ARE WE IN THE SYLLABUS?



WHAT IS FOURIER SERIES?

• A Fourier series is a way to represent a periodic 
function as a sum of sine and cosine functions 
or equivalently, as a sum of complex 
exponentials, each with different frequencies 
and amplitudes.

OR

• A Fourier series is an expansion of a periodic 
function f(x) as an infinite sum of sines and 
cosines or equivalently, as a sum of complex 
exponentials, each with different frequencies 
and amplitudes.
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CONDITIONS FOR EXISTANCE OF FOURIER SERIES

A continuous-time Fourier series exists for a function x(t) 
when the following conditions (called the Dirichlet’s 
conditions) are satisfied:

1. Periodicity: x(t) must be periodic (repeats over a fixed 
interval, T).

2. Finite Discontinuities: x(t) possesses a finite number of 
discontinuities in the period, T

3. Finite Extrema: x(t) has a finite number of maxima and 
minima in the period, T

4. Absolute Integrability: The integral of the absolute value of 
the function over one period must be finite, i.e 
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TROGONOMETRIC FOURIER SERIES 

A periodic signal x(t) can be expressed in the form of trigonometric Fourier 
series comprising the following sine and cosine terms:

𝑥 𝑡 =  𝑎0 + 𝑎1𝑐𝑜𝑠𝜔𝑜𝑡 + 𝑎2 cos 2𝜔𝑜𝑡 + 𝑎𝑛cos(𝑛𝜔𝑜𝑡)

                                 + 𝑏1𝑠𝑖𝑛𝜔𝑜𝑡 + 𝑏2 sin 2𝜔𝑜𝑡 + 𝑏𝑛 sin 𝑛𝜔𝑜𝑡 + …..
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Where
𝑡𝑜 < 𝑡 <  𝑡0 + 𝑇
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𝜔0 is the fundamental frequency and 2𝜔𝑜 , 3𝜔𝑜 are the harmonics



For a periodic function x(t) with period T, we can write 
the Fourier coefficients as follows:
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TROGONOMETRIC FOURIER SERIES FOR PERIODIC FUNCTION

The average value of the DC component of x(t)



SYMMETRY CONDITIONS FOR INTEGRALS

Even Function

For even function,

 x(-t) = x(t)

න
−𝑎

𝑎

𝑥 𝑡 𝑑𝑡 =  2 න
0

𝑎

𝑥 𝑡 𝑑𝑡

Odd Function

For odd function,

 x(-t) = -x(t)
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(a) Even triangular function

(b) Odd sawtooth function



WORKED EXAMPLE -1

Obtain the Fourier series representation of a periodic square wave 
shown below.
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The expression for Fourier series is:
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1. Since the x(t) is symmetrical about the x-axis, i.e x(t) = -x(t), only the cosine terms are present.

2. The waveform is symmetrical about the horizontal axis, therefore the DC term 𝑎0 = 0.

The expected Fourier series should therefore be of the form:
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WORKED EXAMPLE -1



POLAR FOURIER SERIES REPRESENTATION
Polar Fourier representation (Also called Compact Trigonometric Form) is a modified form of trigonometric 
Fourier series which we have seen is given by:
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EXPONENTIAL FORM  FOURIER SERIES   /01

The complex form of Fourier series is simpler and more compact. It is therefore 
more widely used in signal analysis.

From trigonometric Fourier Series,
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EXPONENTIAL FORM  FOURIER SERIES   /02



WORKED EXAMPLE

Find the exponential-form Fourier series of the sawtooth waveform 
shown below. Plot the magnitude and phase.

1

0 1 2 3-1-2-3



Over one period, the signal may be represented as:

x(t) = t       for    0 < 𝑡 < 1   and the period T  = 1

The Fourier series coefficients of the signal x(t) are therefore
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For 𝑛 ≠ 0

𝐶𝑛 = 0 +
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WORKED EXAMPLE / 02
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