DISCRETE FOURIER
TRANSFORM (DFT)

EEEN 462 - ANALOGUE COMMUNICATIONS
Friday, December 19, 2025




WHAT IS DISCRETE FOURIER TRANSFORM?

Discrete Fourier Transform (DFT) is a mathematical technique that
transforms a finite sequence of equally-spaced samples of a
function into a same-length sequence of equally-spaced
samples of the Discrete-Time Fourier Transform (DTFT).

Discrete Fourier
transform (DFT) |




FROM CONTINUOUS TO DISCRETE

Fourier analysis originated with continuous functions, but digital systems require
discrete implementations:

1.

Continuous Time Continuous 3. Discrete Time Frequency
Frequency \ Frequency
N \
Continuous-Time Fourier Discrete-Time Fourier \ Discrete Fourier
Transform (CTFT) Transform (DTFT) Transform (DFT)
X(f) = [® x(t) eF2™t dt X(eW) =3 o2 x[n]elwn X[Kk] =2, 0N x[n] eJ2mkn/N
/

/

2. Continuous Time Continuous
Frequency




DISCRETE FOURIER TRANSDORM (DFT) DEFINITION

X[k] —_ Zn=ON_1 x[n] e—j2rtkn/N
fork=0,1, 2, ..., N-1

Where
X[n]is Input sequence of length N (time domain

X[k] is DFT coefficients of length N (frequency domain)

N is Length of the sequence (must be finite)



INVERSE DISCRETE FOURIER TRANSFORM (IDFT) DEFINITION

X[n]=1/N 3, N X[k] el2mkn/N
forn=0,1, 2, ..., N-1

Where
X[n]is Input sequence of length N (time domain
X[k] is DFT coefficients of length N (frequency domain)
N is Length of the sequence (must be finite)

Inverse DFT (IDFT) reconstructs the original time-domain signal from
Its frequency-domain representation.



DFT MATRIX REPRESENTATION

DFT can be expressed as a matrix multiplication:

where

X=W-x
Wy,
Wi,
W(N—1)1

Wkn — e—j21'tkn/N

W(N—1)(N—1

——




DFT COMPUTATION EXAMPLE

Let's compute the DFT of a simple cosine signal: x[n] =
cos(2m-2-n/8) forn=0,1, ..., 7

L
|1 ®n] = cos(2mw-2-n/8)

1 2 3 4
Frequency Index (k)

Frequency Domain: | X[k

This 8-point cosine at frequency index k=2 produces DFT coefficients with
maghnitude concentrated at k=2 and k=6 (due to symmetry for real-valued signals).



DFT PROPERTIES /01

1. Linearity
* DFT(a-x[n] + b-y[n]) = a-X[k] + b-Y[K]
* The DFT is a linear operator, essential for superposition analysis.

2. Time Shift
* DFT(x[n-m]) = X[Kk]-e 2 tkm/N
* Shifting in time multiplies by a complex exponential in frequency.

3. Frequency Shift
e DFT(x[n]-e/?™m/N) = X[k-m]
* Multiplication by complex exponential shifts frequency.

4. Time Reversal
* DFT(x[-n]) = X[-k] = X[N-K]
* Reversing time reverses frequency (with periodic extension).



DFT PROPERTIES /02

1. For real-valued input sequences x[n], the DFT exhibits conjugate
symmetry:

X[k] = X*[N-k] fork=1,2,..., N-1

2. Implications for Real Signals

* Magnitude is even symmetric: | X[k]| = |X[N-k]|

* Phase is odd symmetric: £X[k] = -£X[N-k]

* Only half the DFT coefficients are unique

* Reduces storage and computation requirements



CONVOLUTION PROPERTY OF DFT

* One of the most important properties of DFT is the Convolution
Theorem, which states that convolution in the time domain
corresponds to multiplication in the frequency domain:

x[n]*y[n] < X[Kk]-Y[k]



PERFORMING LINEAR CONVOLUTION USING THE DFT

To perform linear convolution using DFT:
1. Zero-pad sequences to length = M+N-1

2. Compute DFT of both padded sequences to create x[n] and
y[n]

3. Multiply frequency domain results, X[k] - Y[k]

4. Compute inverse DFT

* This approach can be more efficient than direct convolution for
longer sequences.



PARSSEVAL'S THEOREM

1. Parseval's theorem states that the total energy in a sighal is conserved
between time and frequency domains:

Y™ IXIN]I2 = 1/N 30N IXK]I?
2. Interpretation and Applications:
* Energy Conservation: DFT is a unitary transform (up to scaling)
* Power Spectral Density: |[X[k]|?/N represents power at frequency bin k
* Signhal-to-Noise Ratio: Can be computed in either domain
* Filter Design: Ensures filter implementations preserve signal energy

3. This property is fundamental to many signal processing applications,
Including compression, filtering, and spectral analysis.



MATLAB FUNCTION TO COMPUTE DFT - DIRECT IMPLEMENTATION

function X=myDFT(x)

N = length(x); % Length of input sequence
X = zeros(1, N); % Initialize output array
W =exp(-1] * 2 * pi/ N); % Twiddle factor
for k = 0:N-1
sum_val = 0;
for n = 0:N-1

sum_val = sum_val + x(n+1) * (W”"(k*n)); % x(n+1) because MATLAB
% Indexing starts at 1
end
X(k+1) = sum_val; % Store result
end
end



MATLAB FUNCTION TO COMPUTE DFT - VECTORISED IMPLEMENTATION

function X = myDFT(x)

% Compute DFT using vectorized operations (faster)
N = length(x);

n=0:N-1; % Time indices

kK=n', % Frequency indices (column vector)

% Create DFT matrix using vectorized operations

% X[k] =2_{n=0}"{N-1} x[n] * exp(-j*2rt*k*n/N)
X=x*exp(-1j*2*pi*(k*n)/N);

end



COMPUTATIONAL COMPLEXITY

X[k] — Zn=0N-1 X[n] e-jZTtkn/N
fork=0,1,2,..., N1

1. Direct computation of the DFT from its definition requires
* N complex multiplications per output
« N outputs » N? complex multiplications, O(N2)
* N(N-1) complex additions
* Impractical for large N

2. This complexity motivated the development of the Fast Fourier
Transform (FFT), which reduces the complexity to O(N logN) by
exploiting symmetries in the DFT calculation.



COMPARISON OF DFT & FFT

COMPUTATION) COMPUTATION)
Complexity O(N?) O(N log N)
Multiplications N? (N/2) log, N
Additions N(N-1) N log, N

Speed (N=1024) 1x (baseline) ~200x faster

N requirement

Any N

Power of 2 (radix-2)

Implementation

Simple, direct formula

Algorithmic,
recursive/iterative




APPLICATIONS OF DFT

1. Spectral Analysis

Identifying frequency components in signals (audio, vibration, EEG)
2. Filtering

Frequency domain filtering via multiplication (convolution theorem)
3. Communications

OFDM modulation, channel equalization, spectrum sensing
4. Image Processing

2D DFT for image filtering, compression, pattern recognition
5. Audio Processing

Equalizers, compression (MP3), pitch detection, effects
6. Radar/Sonar

Range and velocity estimation via Doppler analysis



PRACTICAL IMPLEMENTATIONS

. Most real-world applications use FFT implementations of DFT
for computational efficiency.

. Libraries like FFTW (C), NumPy (Python), and MATLAB's fft()
provide optimized implementations



LIMITATIONS OF DFT

1. Finite Length

* DFT assumes signal is periodic with period N, which may not match
reality

2. Spectral Leakage

* Non-integer period signals cause energy to "leak” into adjacent bins
3. Frequency Resolution

 Af=1,/N, limited by observation window length

4. Picket Fence Effect

* DFT samples the continuous spectrum, possibly missing peaks



MITIGATING TECHNIQUES

1. Windowing: Apply window functions (e.g.
Hamming) to reduce leakage

2. Zero Padding: Increases frequency bin density
(interpolation)

3. Increased N: Longer observation improves
frequency resolution

4. Advanced Techniques: Parametric methods,
time-frequency analysis



WINDOW FUNCTIONS

* Window Functions e.g. Hamming Hanning > Blackman

* Window functions taper the signal at edges to make it appear
more periodic, reducing spectral leakage at the cost of frequency
resolution.



	Slide 1: DISCRETE FOURIER TRANSFORM (DFT)
	Slide 2: WHAT IS DISCRETE FOURIER TRANSFORM?
	Slide 3: FROM CONTINUOUS TO DISCRETE 
	Slide 4: DISCRETE FOURIER TRANSDORM (DFT) DEFINITION
	Slide 5: INVERSE DISCRETE FOURIER TRANSFORM (IDFT) DEFINITION
	Slide 6: DFT MATRIX REPRESENTATION
	Slide 7: DFT COMPUTATION EXAMPLE
	Slide 8: DFT PROPERTIES  /01
	Slide 9: DFT PROPERTIES  /02
	Slide 10: CONVOLUTION PROPERTY OF DFT
	Slide 11: PERFORMING LINEAR CONVOLUTION USING THE DFT
	Slide 12: PARSSEVAL’S THEOREM
	Slide 13: MATLAB FUNCTION TO COMPUTE DFT – DIRECT IMPLEMENTATION
	Slide 14: MATLAB FUNCTION TO COMPUTE DFT – VECTORISED IMPLEMENTATION
	Slide 15: COMPUTATIONAL COMPLEXITY
	Slide 16: COMPARISON OF DFT & FFT
	Slide 17: APPLICATIONS OF DFT
	Slide 18: PRACTICAL IMPLEMENTATIONS
	Slide 19: LIMITATIONS OF DFT
	Slide 20: MITIGATING TECHNIQUES
	Slide 21: WINDOW FUNCTIONS

