
DISCRETE FOURIER
TRANSFORM (DFT)

EEEN 462 – ANALOGUE COMMUNICATIONS
Friday, December 19, 2025

WHAT IS DISCRETE FOURIER TRANSFORM?

Discrete Fourier Transform (DFT) is a mathematical technique that
transforms a finite sequence of equally-spaced samples of a
function into a same-length sequence of equally-spaced
samples of the Discrete-Time Fourier Transform (DTFT).

FROM CONTINUOUS TO DISCRETE

Continuous-Time Fourier
Transform (CTFT)

X(f) = ∫-∞
∞ x(t) e-j2πft dt

Discrete-Time Fourier
Transform (DTFT)

X(ejω) = ∑n=-∞
∞ x[n] e-jωn

Discrete Fourier
Transform (DFT)

X[k] = ∑n=0
N-1 x[n] e-j2πkn/N

Fourier analysis originated with continuous functions, but digital systems require
discrete implementations:

1. Continuous Time Continuous
 Frequency

3. Discrete Time Frequency
 Frequency

2. Continuous Time Continuous
 Frequency

DISCRETE FOURIER TRANSDORM (DFT) DEFINITION

X[k] = ∑n=0
N-1 x[n] e-j2πkn/N

for k = 0, 1, 2, ..., N-1

Where
x[n] is Input sequence of length N (time domain
X[k] is DFT coefficients of length N (frequency domain)
N is Length of the sequence (must be finite)

INVERSE DISCRETE FOURIER TRANSFORM (IDFT) DEFINITION

x[n] = 1/N ∑k=0
N-1 X[k] ej2πkn/N

for n = 0, 1, 2, ..., N-1

Where
x[n] is Input sequence of length N (time domain
X[k] is DFT coefficients of length N (frequency domain)
N is Length of the sequence (must be finite)

Inverse DFT (IDFT) reconstructs the original time-domain signal from
its frequency-domain representation.

DFT MATRIX REPRESENTATION

DFT can be expressed as a matrix multiplication:

X = W · x

where
W00 W01 ... W0(N-1)

W10 W11 ... W1(N-1)

...

W(N-1)0 W(N-1)1 ... W(N-1)(N-1

𝑊𝑘𝑛 = e-j2πkn/N

DFT COMPUTATION EXAMPLE

Let's compute the DFT of a simple cosine signal: x[n] =
cos(2π·2·n/8) for n = 0, 1, ..., 7

This 8-point cosine at frequency index k=2 produces DFT coefficients with
magnitude concentrated at k=2 and k=6 (due to symmetry for real-valued signals).

DFT PROPERTIES /01

1. Linearity
• DFT(a·x[n] + b·y[n]) = a·X[k] + b·Y[k]
• The DFT is a linear operator, essential for superposition analysis.

2. Time Shift
• DFT(x[n-m]) = X[k]·e-j2πkm/N

• Shifting in time multiplies by a complex exponential in frequency.

3. Frequency Shift
• DFT(x[n]·ej2πmn/N) = X[k-m]
• Multiplication by complex exponential shifts frequency.

4. Time Reversal
• DFT(x[-n]) = X[-k] = X[N-k]
• Reversing time reverses frequency (with periodic extension).

1. For real-valued input sequences x[n], the DFT exhibits conjugate
symmetry:

X[k] = X*[N-k] for k = 1, 2, ..., N-1

2. Implications for Real Signals
• Magnitude is even symmetric: |X[k]| = |X[N-k]|
• Phase is odd symmetric: ∠X[k] = -∠X[N-k]
• Only half the DFT coefficients are unique
• Reduces storage and computation requirements

DFT PROPERTIES /02

CONVOLUTION PROPERTY OF DFT

• One of the most important properties of DFT is the Convolution
Theorem, which states that convolution in the time domain
corresponds to multiplication in the frequency domain:

x[n] * y[n] ⇔ X[k] · Y[k]

PERFORMING LINEAR CONVOLUTION USING THE DFT

To perform linear convolution using DFT:
1. Zero-pad sequences to length ≥ M+N-1
2. Compute DFT of both padded sequences to create x[n] and

y[n]
3. Multiply frequency domain results, X[k] · Y[k]
4. Compute inverse DFT
• This approach can be more efficient than direct convolution for

longer sequences.

PARSSEVAL’S THEOREM

1. Parseval's theorem states that the total energy in a signal is conserved
between time and frequency domains:

∑n=0
N-1 |x[n]|2 = 1/N ∑k=0

N-1 |X[k]|2

2. Interpretation and Applications:
• Energy Conservation: DFT is a unitary transform (up to scaling)
• Power Spectral Density: |X[k]|2/N represents power at frequency bin k
• Signal-to-Noise Ratio: Can be computed in either domain
• Filter Design: Ensures filter implementations preserve signal energy

3. This property is fundamental to many signal processing applications,
including compression, filtering, and spectral analysis.

MATLAB FUNCTION TO COMPUTE DFT – DIRECT IMPLEMENTATION

function X = myDFT(x)
N = length(x); % Length of input sequence
X = zeros(1, N); % Initialize output array
W = exp(-1j * 2 * pi / N); % Twiddle factor
for k = 0:N-1
 sum_val = 0;
 for n = 0:N-1
 sum_val = sum_val + x(n+1) * (W^(k*n)); % x(n+1) because MATLAB
 % indexing starts at 1
 end
 X(k+1) = sum_val; % Store result
end
end

function X = myDFT(x)
% Compute DFT using vectorized operations (faster)
N = length(x);
n = 0:N-1; % Time indices
k = n'; % Frequency indices (column vector)
% Create DFT matrix using vectorized operations
% X[k] = Σ_{n=0}^{N-1} x[n] * exp(-j*2π*k*n/N)
X = x * exp(-1j * 2 * pi * (k * n) / N);
end

MATLAB FUNCTION TO COMPUTE DFT – VECTORISED IMPLEMENTATION

COMPUTATIONAL COMPLEXITY

X[k] = ∑n=0
N-1 x[n] e-j2πkn/N

for k = 0, 1, 2, ..., N-1

1. Direct computation of the DFT from its definition requires
• N complex multiplications per output
• N outputs → N² complex multiplications, O(N2)
• N(N-1) complex additions
• Impractical for large N

2. This complexity motivated the development of the Fast Fourier
Transform (FFT), which reduces the complexity to O(N logN) by
exploiting symmetries in the DFT calculation.

COMPARISON OF DFT & FFT

ASPECT DFT (DIRECT
COMPUTATION)

FFT (FAST
COMPUTATION)

Complexity O(N²) O(N log N)

Multiplications N² (N/2) log₂ N

Additions N(N-1) N log₂ N

Speed (N=1024) 1× (baseline) ~200× faster

N requirement Any N Power of 2 (radix-2)

Implementation Simple, direct formula Algorithmic,
recursive/iterative

APPLICATIONS OF DFT

1. Spectral Analysis

 Identifying frequency components in signals (audio, vibration, EEG)

2. Filtering

 Frequency domain filtering via multiplication (convolution theorem)

3. Communications

 OFDM modulation, channel equalization, spectrum sensing

4. Image Processing

 2D DFT for image filtering, compression, pattern recognition

5. Audio Processing

 Equalizers, compression (MP3), pitch detection, effects

6. Radar/Sonar

 Range and velocity estimation via Doppler analysis

PRACTICAL IMPLEMENTATIONS

1. Most real-world applications use FFT implementations of DFT
for computational efficiency.

2. Libraries like FFTW (C), NumPy (Python), and MATLAB's fft()
provide optimized implementations

LIMITATIONS OF DFT

1. Finite Length
• DFT assumes signal is periodic with period N, which may not match

reality
2. Spectral Leakage
• Non-integer period signals cause energy to "leak" into adjacent bins
3. Frequency Resolution
• Δf = fₛ/N, limited by observation window length
4. Picket Fence Effect
• DFT samples the continuous spectrum, possibly missing peaks

MITIGATING TECHNIQUES

1. Windowing: Apply window functions (e.g.
Hamming) to reduce leakage

2. Zero Padding: Increases frequency bin density
(interpolation)

3. Increased N: Longer observation improves
frequency resolution

4. Advanced Techniques: Parametric methods,
time-frequency analysis

WINDOW FUNCTIONS

• Window Functions e.g. Hamming Hanning → Blackman
• Window functions taper the signal at edges to make it appear

more periodic, reducing spectral leakage at the cost of frequency
resolution.

	Slide 1: DISCRETE FOURIER TRANSFORM (DFT)
	Slide 2: WHAT IS DISCRETE FOURIER TRANSFORM?
	Slide 3: FROM CONTINUOUS TO DISCRETE
	Slide 4: DISCRETE FOURIER TRANSDORM (DFT) DEFINITION
	Slide 5: INVERSE DISCRETE FOURIER TRANSFORM (IDFT) DEFINITION
	Slide 6: DFT MATRIX REPRESENTATION
	Slide 7: DFT COMPUTATION EXAMPLE
	Slide 8: DFT PROPERTIES /01
	Slide 9: DFT PROPERTIES /02
	Slide 10: CONVOLUTION PROPERTY OF DFT
	Slide 11: PERFORMING LINEAR CONVOLUTION USING THE DFT
	Slide 12: PARSSEVAL’S THEOREM
	Slide 13: MATLAB FUNCTION TO COMPUTE DFT – DIRECT IMPLEMENTATION
	Slide 14: MATLAB FUNCTION TO COMPUTE DFT – VECTORISED IMPLEMENTATION
	Slide 15: COMPUTATIONAL COMPLEXITY
	Slide 16: COMPARISON OF DFT & FFT
	Slide 17: APPLICATIONS OF DFT
	Slide 18: PRACTICAL IMPLEMENTATIONS
	Slide 19: LIMITATIONS OF DFT
	Slide 20: MITIGATING TECHNIQUES
	Slide 21: WINDOW FUNCTIONS

